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Abstract
Non-covalent interactions involving aromatic rings contribute significantly to the stability of
three-dimensional structures of biological macromolecules. Therefore, accurate descriptions of
such interactions are crucial in understanding the functional mechanisms of biological
molecules. However, it is also well known that, for some cases where van der Waals
interactions make a dominant contribution, conventional ab initio electronic structure
calculations, such as density functional theory, do not produce accurate interaction energies. In
this study, we evaluated molecular mechanics (MM) calculations for two types of interactions
involving aromatic rings, π–π interactions and cation–π interactions, by comparing our results
with those obtained by advanced ab initio calculations at the coupled-cluster with singles,
doubles and perturbative triples level. In structures with stacked aromatic rings, interaction
energies obtained by MM calculations are overestimated. On the other hand, for cation–π

interactions, the energies in MM calculations are significantly underestimated. In both cases,
addition of an induction energy based on polarization effects also fails to improve the estimate
given by MM calculations. The results indicate that current effective pairwise potentials are
inappropriate to represent π–π and cation–π interactions.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Non-covalent interactions involving aromatic rings, such as
cation–π interaction and stacking of rings, are widely observed
in biological macromolecules. In particular, statistical analyses
in the Protein Data Bank show a high frequency of occurrence
for cation–π interactions (1 per 77 amino acid residues) and
indicate that 26% of tryptophan (Trp) residues are involved in
cation–π interactions [1].

For stacking of aromatic rings, which occurs between
planar residues in biological molecules such as Trp,
phenylalanine (Phe), tyrosine (Tyr) and bases of nucleotide
residues, there are two types of structures: ‘parallel’ stacking,

1 Author to whom any correspondence should be addressed.

where each residue stacks parallel to the next, and ‘T-shaped’
stacking, where each ring stacks perpendicularly to the next.
In DNA, parallel stacking contributes significantly to the
stabilization of double helix conformations. For instance,
the stabilization energy by stacking of A·T and G·C base
pairs has experimentally been determined to be −11.9 and
−16.5 kcal mol−1, respectively [2]. In proteins, in addition to
parallel stacking, T-shaped stacking is also frequently involved.

In the case of Trp-cage, which has a hydrophobic
core where proline (Pro), Tyr and Trp interact with each
other through both parallel and T-type stacking, the melting
temperature, Tm, is increased from 42 to 57 ◦C by a mutation
of Pro to Trp inside the core [3]. In protein–drug recognition,
stacking of aromatic rings also plays an important role in
stabilization of the structure. For instance, in the complex
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of acetylcholinesterase (AChE) with E2020 (a drug for
Alzheimer’s disease), single mutations such as W86A and
W286A increase the free energy upon binding of the drug by
+3.4 and +4.4 kcal mol−1, respectively [4]. Those results
indicate that stacking interactions of aromatic rings actually
contribute to stabilization of three-dimensional structures
of biological molecules, and therefore accurate descriptions
of those interactions are required to understand molecular
recognition in biological molecules.

Theoretical investigations have been carried out to
gain an understanding of stacking of aromatic rings and
cation–π interactions. Those analyses showed that the
stabilization energy of cation–π interactions originates from
both electrostatic and cation-induced polarization interactions.
In contrast, the origin of the stacking of aromatic rings has been
indicated to be van der Waals (vdW) interactions. However,
accurate descriptions of vdW interactions require intensive
treatments of electron correlation effects; therefore, high-level
ab initio calculations, such as second-order Møller–Plesset
perturbation (MP2), coupled-cluster with singles, doubles
and perturbative triples (CCSD(T)) or quantum Monte Carlo
calculations, are necessary, but their computational costs are
prohibitive. Density functional theory (DFT) calculations are
widely used to investigate electronic structures of biological
molecules, because their computational costs are much lower
than those of high-level ab initio calculations. However,
if one adopts commonly used density functionals, such as
the local density approximation (LDA) or the generalized
gradient approximation (GGA), DFT fails to estimate vdW
interactions [5–7].

In this study, we investigated the reliability of present
molecular mechanics (MM) potentials to describe cation–π

and π–π interactions by comparing them with the results
of CCSD(T) calculations. As a model system of cation–π

interactions, we employed a structure composed of an aromatic
ring and a metal. In actual biological systems, metals have been
found to interact with aromatic rings: a coordination of Na+
with a tryptophan ring has been reported in crystal structures
of the hen-egg-white lysozyme [8] and in a thermophilic
triosephosphate isomerase mutant [9] and thermoalkalophilic
lipase [10]. Other examples involving coordination of Cs+
with an aromatic residue have been found in crystal structures
of rhodanese [10], glutamine synthase [11] and methylamine
dehydrogenase [12]. Further, stacking between an aromatic
ring and a peptide group was investigated in this study, since
that is also often found in protein structures. As a result,
it should be noted that the stacking found in real biological
systems is not limited to that between two aromatic rings,
but occurs widely in various molecular components involving
planar systems with delocalized electrons.

2. Methodology

2.1. BSSE

The basis set superposition error (BSSE) is one of the serious
problems involved in electronic structure calculations that use
localized molecular orbitals [13]. A standard method applied

to correct that problem is the counterpoise (CP) procedure [14],
which calculates a correction term using a set of ghost orbitals
located in the place of partner molecules. In the case of
complexes of molecules A and B (AB), BSSE is estimated
as

EBSSE = [E AB
A (A)−E AB

A (AB)]+[E AB
B (A)−E AB

B (AB)] (1)

where E J
I (K ) represents energy of molecule I in geometry

J when a basis set of K is used. The counterpoise-corrected
interaction energy, �ECP, is written as

�ECP = E AB
AB (AB) − E A

A (A) − E B
B (B) + EBSSE. (2)

2.2. Estimation of CCSD(T) energy using a complete basis set

CCSD(T) calculations are known to be dependent on the basis
sets used; in order to accurately estimate stacking energy,
larger basis sets are required. However, computational costs
increase significantly with the size of basis sets used. In
this study, CCSD(T) energy is estimated at a basis set limit
(ECCSD(T)(limit)), which mimics the energy calculated using a
complete basis set by exploiting a procedure proposed by
Tsuzuki et al [15]. According to this scheme, ECCSD(T)(limit)

is calculated on the basis of the following equation:

ECCSD(T)(limit) = EMP2(limit) + �CCSD(T)(limit) (3)

where �CCSD(T)(limit) denotes the CCSD(T) correction
term, i.e. �CCSD(T) = ECCSD(T) − EMP2 at the basis set limit.
EMP2 and ECCSD(T) denote stacking energies obtained at the
MP2 and CCSD(T) levels, respectively. Here, stacking energy
at the MP2 level with use of the basis set limit (EMP2(limit)) is
estimated by the following equation:

EMP2(limit) = EHF(limit) + Ecorr(MP2)(limit). (4)

EHF(limit) and EcorrMP2(limit) denote stacking energies at the
Hartree–Fock (HF) level (EHF) and MP2 level correlation
energies (Ecorr(MP2) = EMP2 − EHF), respectively, at the basis
set limit. In practice, EMP2(limit) is obtained by extrapolation
of the correlation energy. The value of �CCSD(T)(limit) is
estimated by the following equation:

�CCSD(T)(limit) = �CCSD(T)(M)+�(M)CCSD(T). (5)

Here, �CCSD(T)(M) shows �CCSD(T) obtained using
a medium-size basis set, and �(M)�CCSD(T) shows a
correction term for �CCSD(T) obtained using the medium-
size basis set, since �CCSD(T) is dependent on the size of the
basis sets used in calculations. This term is estimated by the
following equation:

�(M)�CCSD(T) = F�CCSD(T) × �(M)Ecorr(MP2)

= F�CCSD(T) × [Ecorr(MP2)(limit) − Ecorr(MP2)(M)], (6)

where Ecorr(MP2)(M) denotes Ecorr(MP2) obtained using the
medium-size basis set. �(M)Ecorr(MP2) is a correction term
for Ecorr(MP2) due to the dependence of the basis set size used
in MP2 calculations. F�CCSD(T) is a scaling factor applied to
estimate �(M)�CCSD(T).
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Interaction energies of benzene, thiophene and naph-
thalene dimers, calculated using various basis sets (6-31G∗,
6-311G∗, 6-311G∗, cc-pVDZ and a modified cc-pVTZ basis
set), have shown that �CCSD(T) is about 20–29% of the ab-
solute value of Ecorr(MP2) [16–21]. These results suggest that
�(M)�CCSD(T) is approximately 25 ± 5% of the absolute
value of �(M)Ecorr(MP2). Therefore, F�CCSD(T) can be set to
−0.25. In this way, CCSD(T) energies for the model systems
were calculated to obtain their potentials. All calculations were
performed using the Gaussian 03 package [22].

2.3. Estimation of induction energy

The induction energy in MM calculations has been described
using the isotropic polarization model, where atomic point
charges polarize other atoms and interact with their induced
atomic dipole moments. The electrostatic field that induces
a dipole moment on atom i is calculated self-consistently in
an iterative way, and the polarization energy is then calculated
according to

Epol = − 1
2

∑

i

αi E
(0)

i · Ei . (7)

Here, αi is the isotropic polarizability of atom i and Ei is
the electrostatic field on atom i due to all other charges and
induced dipoles. E is the electrostatic field on atom i resulting
from permanent atomic charges only. All MM calculations
were performed using the AMBER 9 package [23].

2.4. Model systems

Na+–benzene and Na+–imidazole complexes were employed
as model systems for cation–π interactions (figure 1(a)).
In both models, cations were aligned perpendicular to the
aromatic rings and with the centre of mass of the six-membered
rings. For π–π interactions, complexes of a benzene ring and
a peptide plane, which is capped with hydrogen atoms, were
used as the model systems (figure 2(a)).

3. Results and discussion

3.1. Cation–π interaction

Figure 1(b) shows profiles of the interaction energy with
respect to the distance between Na+ and the aromatic rings.
The energy profiles obtained by the CCSD(T) calculations at
the basis set limit show that, in both cases, minimum-energy
states are found to be at a distance of 2.5 Å between the cation
and the rings, and that the interaction energy between Na+
and the imidazole ring is larger than that of the Na+–benzene
system; this energy difference between energy-minimum states
of the two systems is 5.3 kcal mol−1. This is a result of
the difference in the sizes of the aromatic rings analysed: π

electrons of the imidazole ring are more abundant than those
of the benzene ring, and therefore the stabilization energy
between the cation and π electrons is increased more in
the Na+–imidazole system than in the Na+–benzene system.
The energy profile obtained by the DFT calculations shows
a slight overestimation of interaction energy between the
cation and aromatic rings. However, the energy-minimum

geometries obtained by the DFT and CCSD(T) calculations are
very similar (figure 1(b)). Further, in the DFT calculations,
interaction energies of the Na+–imidazole system are larger
than those of the Na+–benzene system. Those results show
that the cation–π interactions can be estimated by the DFT
calculations.

The shapes of the energy profiles obtained by the
MM calculations are similar to those of the CCSD(T) and
DFT calculations; geometries of energy-minimum states are
in close agreement with those obtained by the CCSD(T)
and DFT calculations (both the Na+–benzene and Na+–
imidazole distances are about 2.3 Å); and the stabilization
energy of the Na+–imidazole system is larger than that of
the Na+–benzene system (the difference of those energies
is about 1.7 kcal mol−1). However, the absolute values
of interaction energies are significantly underestimated in
both the benzene and imidazole systems: MM energies of
energy-minimum geometries of the benzene and imidazole
systems are −13.8 and −15.5 kcal mol−1, respectively,
while the corresponding CCSD(T) energies are −21.4 and
−26.7 kcal mol−1, respectively. It has been shown that the
origin of the cation–π interaction is both the electrostatic
and induction energies; the origin of the induction energy
is the induced polarization of the π electron by the electric
field produced by the cation metals [24, 25]. Thus, the
underestimation in the MM calculations is presumably caused
by the absence of induction effects. Accordingly, we examined
whether a classical model based on equation (7) can describe
such effects.

Figure 1(c) shows that the induction energy significantly
increases stabilization energy obtained by the MM calcula-
tions; when distances between the cation and the aromatic rings
are large (<2.5 Å), their stabilization energies are in good
agreement with those obtained by CCSD(T) at the basis set
limit. In contrast, for short distances between the cation and
the aromatic rings, the MM calculations overestimate the in-
teraction energies. In addition, for the Na+–imidazole system,
the minimum-energy state in the MM energy profile is shifted
to a shorter distance between the cation and the aromatic rings
(2.0 Å).

Figures 1(d) and (e) show interaction energy profiles
resulting from replacing Na+ with Mg2+ in the Na+–benzene
and Na+–imidazole systems. As expected, an increase
in the charge of the cation led to a drastic change in
interaction energies; energy profiles obtained by CCSD(T) at
the basis set limit show that interaction energies for energy-
minimum geometries of model systems including Mg2+
are approximately fivefold stronger than those of systems
including Na+ (the stabilization energies are −108.2 and
−127.2 kcal mol−1, respectively) and that energy-minimum
geometries in both systems are shifted to a shorter distance of
2.0 Å, in comparison with the Na+ systems. Energy profiles
obtained by the DFT calculations show that energy-minimum
geometries are consistent with energy profiles obtained by
CCSD(T) at the basis set limit, but interaction energies
of energy-minimum geometries are slightly overestimated at
−115.4 and −131.2 kcal mol−1 for Mg2+–benzene and Mg2+–
imidazole systems, respectively.
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Figure 1. (a) Model structures for cation–π interactions. The metal is shown as a sphere. The left panel shows a metal–benzene system,
where the metal is placed on a line perpendicular to the benzene ring and passing through the centre of mass of the benzene ring. The right
panel shows a metal–imidazole ring system, where the metal is placed on a line perpendicular to an imidazole ring and passing through the
centre of mass of the six-membered ring moiety in the imidazole ring. (b) Energy profiles of interaction energies of Na+ and
benzene/imidazole rings. The horizontal axis shows the distance between the metal and the benzene/imidazole rings. The interaction energies
of a Na+-benzene system obtained by CCSD(T) at the basis set limit, MM and DFT, are shown in square ( ), diamond shape (�), and a
cruciform (+), respectively. Interaction energies of a Na+-imidazole system obtained by CCSD(T), MM and DFT, are shown in triangle (�), a
cross (+) and hyphen (−), respectively. (c) Energy profiles of interaction energies of Na+ and benzene/imidazole rings. Markers are the same
as in (b). In the MM calculations, an induction term is added to the energy function used (see the methodology section). (d) Energy profiles of
the interaction energies of Mg2+ and benzene/imidazole rings. Markers are the same as in (b). (e) Energy profiles of interaction energies of
Mg2+ and benzene/imidazole rings. Markers are the same as in (b). In the MM calculations, an induction term is added to the energy function
used (see the methodology section).

With respect to the MM calculations, similar trends are
also observed for the Mg2+-bound systems as are found in
the Na+ systems: interaction energies are underestimated in
the absence of an induction term. However, for the Mg2+
systems, the MM calculations, including the induction energy
defined by equation (7), still lead to significant differences
in stabilization energies in comparison with those obtained
by the CCSD(T) calculations at the basis set limit. In
particular, noticeable differences in stabilization energy are
observed for shorter distances between the cation and the
aromatic rings (<1.8 Å); this indicates that the magnitude
of redistribution effects of electrons becomes larger as
the distances decrease, suggesting that interaction energies

between Mg2+ and aromatic rings cannot readily be described
using energy functions used in the MM calculations. In
addition, stabilization energies between the benzene and
imidazole systems estimated by the MM calculations are
−48.1 and −49.4 kcal mol−1, respectively; these stabilization
energies are very different from those of the CCSD(T)
calculations at the basis set limit.

Those results demonstrate the difficulty involved in efforts
to precisely describe induction effects in cation–π complexes
using classical polarization treatments. The induction energies
used in this study were calculated with non-polarizable
partial charges, even when surrounding interactions were
changed; therefore, classical polarization treatments cannot
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Figure 2. (a) Model structures for stacking of peptide and benzene. Left panel shows a parallel-type conformation: the peptide and benzene
planes are parallel. Right panel shows a T-type conformation: the peptide and benzene planes are orthogonal. (b) Energy profiles of
interaction energies of a peptide group and benzene. The horizontal axis represents the distance between the centre of mass of the benzene
ring and the midpoint of the bond between C and N atoms. The interaction energy profiles obtained by CCSD(T), MM and DFT are shown in
triangle (�), diamond shape (�) and a cross shape (+), respectively.

account for effects of changes in π -electron clouds induced
by interactions with a cation. We observed that, for both
systems at longer distances between cations and aromatic rings
where induction effects are smaller, inconsistency with the
CCSD(T) calculations at the basis set limit declines, although
at shorter distances, where induction effects become larger,
discrepancies between the MM and CCSD(T) calculations
become significant.

3.2. Stacking

Peptide–benzene systems were used as model systems of
π–π stacking (figure 2(a)). Two structures were used for
calculations: one of the ‘parallel’ type, where the plane of the
peptide group is parallel to that of the benzene, and the other
of the ‘T-type, where the peptide plane is orthogonal to that of
the benzene.

Profiles of interaction energies with respect to distances
between peptide groups and the centres of mass of benzenes
are shown in figure 2(b). According to those obtained by the
CCSD(T) calculations at the basis set limit, energy-minimum
geometries for the T and parallel types are distances of 3.8
and 3.4 Å, respectively, while the corresponding interaction
energies of the energy-minimum geometries are −1.42 and
−2.33 kcal mol−1, respectively. Thus, the T-type conformation
is found to be more stable than that of the parallel type by
0.91 kcal mol−1. Actually, the parallel-type conformation
of the peptide–benzene system is changed to the T-type
through geometric optimization using the resolution identity
(RI)–MP2 calculation with cc-pVTZ basis sets, whereas the
geometric changes are moderate in optimization if one starts
the calculation from the T-type conformation [26].

The origin of stabilization energy in stacking has been
shown to be vdW interactions. In reality, the DFT calculations
fail to estimate interaction energies for both model systems;
rather, repulsion even occurs at energy-minimum distances
of CCSD calculations at the basis set limit. The small
stabilization energy obtained in the T-type conformation is
presumed to be due to electrostatic interactions, which can
be accurately estimated by DFT calculations, while vdW
interactions are the most dominant [21, 26]. On the other hand,

for the parallel-type conformation, electrostatic interactions
decrease stabilization energies in π–π interactions, while vdW
interactions, which the DFT calculations completely fail to
estimate, are crucial for stabilization of the systems [21, 26].

Energy profiles obtained by the MM calculations show
that stabilization energies can be reliably estimated by using
MM potentials, and that energy-minimum geometries of
both the parallel- and T-type conformations are consistent
with those of the CCSD(T) calculations at the basis set
limit. In contrast to calculations of cation–π interactions
discussed above, stabilization energies in the stacking are
overestimated by the MM calculations for both types of
conformations; in fact, minimum-energy geometries of both
the T- and parallel-type conformations are −2.38 and
−2.20 kcal mol−1, respectively. In particular, the magnitude
of such overestimations is larger in the case of the parallel-
type conformation rather than the T-type. MM energies
are 1.6-fold larger than CCSD(T) energies, leading to the
incorrect conclusion that a T-type conformation is almost
isoenergetic to a parallel type, although the energy difference
of 0.91 kcal mol−1 does exist in the CCSD(T) calculations at
the basis set limit.

Those results show that the MM calculations are not
precise enough to estimate energies of stacked systems, even
if vdW energies are included in the energy functions. This
failure is presumably due to existing descriptions of vdW
energies, which are based on two-body interactions calculated
using atomic-pair parameters, while stabilization of stacking
could have originated from interactions between the π -electron
‘clouds’ of aromatic rings and a peptide group. Consequently,
effective potentials based on schemes independent of atom-
pair-based two-body interactions must be developed, in order
to precisely describe stabilization energies of π–π and cation–
π interactions involving aromatic rings. Effective potentials
can also be used to perform fast calculations of such interaction
energies, which are available even in molecular dynamics
simulations.

We have recently developed a scheme to obtain an
effective vdW potential, which is a functional of the
electron density of the system, by optimizing its parameters.
Our functional can be highly and readily parallelized for
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Table 1. BSSE with six different basis sets for the peptide–benzene system in the T- and parallel-type conformations, and for the
Na+–benzene system. EBSSE is BSEE energy in kcal mol−1, and the ratio of error is the ratio of EBSSE to an interaction energy corrected by the
CP method, EBSSE/�ECP.

T-type Parallel type Na+–benzene

Basis set
EBSSE

(kcal mol−1)
Ratio of error
(%)

EBSSE

(kcal mol−1)
Ratio of error
(%)

EBSSE

(kcal mol−1)
Ratio of error
(%)

3-21G∗ 2.16 72.80 2.83 179.90 15.62 43.24
6-31G∗ 1.52 48.90 2.28 106.20 5.89 20.69
6-31 + G∗ 1.81 48.40 2.45 77.30 4.33 17.89
6-311G∗ 1.24 40.00 2.14 85.23 4.43 17.78
6-311 + G∗ 1.75 44.60 2.47 71.17 3.62 15.43
6-311G+∗∗ 1.53 41.40 2.20 64.70 3.33 15.12

Figure 3. The magnitude of effects of BSSE. The vertical axis
represents the ratio of EBSSE to the interaction energy corrected by
the CP method, �ECP, and the horizontal axis represents the size of
the basis sets used. The energy profiles obtained using the
Na+-benzene system, the T-type conformation of a peptide-benzene
system and the parallel type conformation of the same system, are
shown in diamond (�), square (�) and triangle (�) shape,
respectively.

calculation, and thus it enables us to precisely and rapidly
calculate vdW energies and forces of stacking of aromatic
rings, even though the accuracy is equivalent to that of
CCSD(T) at the basis set limit [27].

3.3. Effects of BSSE

In order to investigate the effects of BSSE, we calculated
interaction energies of the stacking of peptide and benzene
in T- and parallel-type conformations, as well as that of the
Na+–benzene system, using MP2 with six distinct basis sets
(3-31G∗, 6-31G∗, 6-31 + G∗, 6-311G∗, 6-311 + G∗ and
6-311 + G∗∗). The modelled structures used in the calculations
were taken from the energy-minimum geometries in the energy
profiles. In figure 3, ratios of BSSE to the interaction energy
corrected by the CP method, EBSSE/�ECP, are plotted with
respect to the size of the basis sets used. It was found that the
effects of BSSE are larger in the peptide–benzene system in
comparison with the Na+–benzene system, and that the effects
of BSSE on the parallel-type conformation are more significant
than those on the T-type conformation.

This is consistent with the magnitude of the contribution
of vdW interaction energies, demonstrating that it is crucial to

consider BSSE for accurate descriptions of vdW energies, and
that sufficiently large basis sets should be used, since ratio of
EBSSE is 64.7% for the parallel-type conformation, even when
a larger basis set, 6-311G+∗∗, is used (table 1).

4. Conclusions

In this study, we evaluated MM potentials to estimate the
stabilization energies for stacking involving aromatic rings.
For stacking of a peptide and aromatic ring complex, vdW
interactions are the origin of the stabilization. For cation–π

interactions, electrostatic and induction energies are the origin
of the stabilization, while vdW interactions are negligible.
In both cases, the interaction energies obtained by the MM
calculations are not consistent with those of the CCSD(T)
calculations at the basis set limit. These features suggest
that current effective pairwise potentials are not appropriate
to represent such interactions. Therefore, effective potentials
based on schemes independent of atom-pair-based two-
body interactions must be developed in order to describe
stabilization energies of π–π and cation–π interactions
involving aromatic rings, and to perform fast calculations of
such interaction energies as well. For that purpose, BSSE
should be chosen to fit potential parameters, since it cannot
be ignored using even large basis sets.
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